A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties
نویسندگان
چکیده
We here propose a multiscale numerical method for the solution of stochastic partial differential equations with localized uncertainties. It is based on a multiscale domain decomposition method that exploits the localized side of uncertainties and incidentally improves the conditioning of the problem by operating a separation of scales. An efficient iterative algorithm is proposed that requires the solution of a sequence of simple global problems at a macro scale, involving a deterministic operator, and local problems at a micro scale for which we have the possibility to use fine approximation spaces. Global and local problems are solved using tensor approximation methods allowing the representation of high dimensional stochastic parametric solutions. Convergence properties of these tensor based methods, which are closely related to spectral decompositions, benefit from the separation of scales. Different types of uncertainties are considered at the micro level. They may be associated with some variability in the operator or source terms, or even with some geometrical variability. In the latter case, specific reformulations of local problems using fictitious domain methods are introduced.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملNumerical solution of nonlinear SPDEs using a multi-scale method
In this paper we establish a new numerical method for solving a class of stochastic partial differential equations (SPDEs) based on B-splines wavelets. The method combines implicit collocation with the multi-scale method. Using the multi-scale method, SPDEs can be solved on a given subdomain with more accuracy and lower computational cost than the rest of the domain. The stability and c...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملSimulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کامل